

 Slide 1 of 29

PENETRATION TEST
 ACME CORP. BAT PORTAL

PENTEST

WEBAPP1001
Saturday, May 24, 2025

 Slide 2 of 29

TESTING SUMMARY

Start Jan 14 2024 Tested 100.00%

End Jan 24 2024 In Progress 0%

Completed 100% Not Tested 0%

Total Testcases 127 Not Applicable 0%

UNIQUE VULNERABILITIES

Total 3

Critical 0

High 1

Medium 2

Low 0

Info 0

 Slide 3 of 29

REMEDIATION PROGRESS

Open 3

Retest 0

Closed 0

SCOPE

In
bat-api.attackforge.com, bat-

portal.attackforge.com
Out

The following items considered out-
of-scope for this assessment:

• Any APIs following
/integrations/...

• Testing from the Admin user role
• ...

 Slide 4 of 29

EXECUTIVE SUMMARY

Objective
The objective of testing was to assess the security posture for the new AttackForge Bat Portal, from the perspective of an
external self-registered user.

Approach
The following scenario's were assessed:

• Attacker has self-registered an account on the AttackForge Bat Portal.
• Attacker has access to compromised staff user credentials for an account on the AttackForge Bat Portal.

Summary
AttackForge was able to compromise the application, and subsequently gain access to the internal corporate network.
From here, AttackForge was able to gain access to credit card data within the Secure Payments Area (SPA) within
Cardholder Data Environment (CDE).

 Slide 5 of 29

Figure 1: Access to Credit Card Data in SPA

 Slide 6 of 29

SUMMARY OF RECOMMENDATIONS

The following recommendations are made to <CUSTOMER> as a result of this assessment:
Recommendation 1: Do this thing..
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam ipsum augue, finibus id pretium sit amet, semper nec
lorem. Nam bibendum arcu sed odio iaculis, a pretium eros ornare. Suspendisse in imperdiet ipsum, sed congue nisi. In
ullamcorper feugiat bibendum. Vestibulum eu diam sed diam ultrices cursus eu vel nisl. Phasellus vestibulum est eu
faucibus tempor. Integer id elementum enim, quis tristique est.
Recommendation 2: Do that thing..
Integer neque urna, elementum at nibh ut, ultrices pulvinar lacus. Donec eget turpis porttitor lectus laoreet euismod.
Vivamus suscipit gravida metus vitae pellentesque. Ut maximus dictum mi, ut accumsan nulla maximus et. Vestibulum
auctor quis nulla pulvinar eleifend. Aliquam aliquam iaculis est blandit dapibus. Sed posuere ipsum sed consectetur
ultrices. Vestibulum feugiat vulputate magna eget commodo.

 Slide 7 of 29

POSITIVE SECURITY OBSERVATIONS
The following positive security observations were observed during this assessment:

• Lorem ipsum dolor sit amet, consectetur adipiscing elit.
• Nullam ipsum augue, finibus id pretium sit amet, semper nec lorem.
• Nam bibendum arcu sed odio iaculis, a pretium eros ornare.
• Suspendisse in imperdiet ipsum, sed congue nisi.

 Slide 8 of 29

SUMMARY FINDINGS
PRIORITY VULNERABILITY REMEDIATION STATUS

HIGH
Unrestricted Upload of File with
Dangerous Type

MEDIUM Inconsistent Access Control

MEDIUM Relative Path Traversal

 Slide 9 of 29

ATTACKCHAINS

1. Gain control of core web
server to further pivot attack

into ACME Corp. internal
network.

External Attacker

Attacker who has self-registered
account on ACME Corp. Bat Portal

Internet-facing application.

Action

Log into application and
enumerate vulnerable file-upload

functionality within the
application.

Exploit High Vulnerability

Attacker identifies vulnerable
upload functionality in MyProfile

and uploads web shell.

 Slide 10 of 29

Action

Search for ways to trigger web
shell.

Exploit Medium Vulnerability

Attacker enumerates server
directory structure to navigate
directly to uploaded web shell.

Target Server

Attacker triggers web shell,
elevates to full shell, then creates

back door in web server for
persistent remote access.

Captured Flag

Operating-System access to
compromised ACME Corp. Bat

Portal web server allowing further
attack into ACME Corp. internal

network.

 Slide 11 of 29

VULNERABILITIES

 1. Unrestricted Upload of File with Dangerous Type

CVSSv3 SCORE

Base 8.5

Temporal 8.5

Environmental 8.6

Vector CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H

DESCRIPTION

An unrestricted upload of files with dangerous type often occurs in applications that explicitly trust
application users will submit files of specific type and content only. Uploaded files are then either
passed to other internal components for further processing or remain stored for future use within the
application in an easily guessable location.

 Slide 12 of 29

In a typical attack scenario, an attacker discovers the upload functionality in the application and
submits a specifically crafted file that embeds malicious content, e.g. virus, exploit or shell code. From
this point the attacker either passively waits until the malicious content is accessed and executed by
an internal component, other system or user, or if the file is stored in a discoverable location the
attacker tries triggering file execution within application by leveraging application mapping of known
file types to specific execution routines. An insider or an attacker who can get administrative access to
application can upload a web shell, then upload a normal shell and escalate privileges. The attack can
be further propagated to other hosts on same network segment.

ATTACK SCENARIO

Arbitrary code execution is possible if an uploaded file is interpreted and executed as code by the
recipient. This is especially true for .asp and .php extensions uploaded to web servers because these
file types are often treated as automatically executable, even when file system permissions do not
specify execution.

 Slide 13 of 29

Figure 2

REMEDIATION RECOMMENDATION

1. Assume all input is malicious. Use an 'accept known good' input validation strategy, i.e. use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does.

2. Generate a new, unique filename for an uploaded file instead of using the user-supplied
filename, so that no external input is used at all.

 Slide 14 of 29

3. Define a very limited set of allowable extensions and only generate filenames that end in these
extensions.

4. Consider the possibility of XSS (CWE-79) before allowing .html or .htm file types.
5. Ensure that only one extension is used in the filename. Some web servers, including some

versions of Apache, may process files based on inner extensions so that 'filename.php.gif' is fed to
the PHP interpreter.

6. For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

7. Do not rely exclusively on the MIME content type or filename attribute when determining how to
render a file. Validating the MIME content type and ensuring that it matches the extension is only
a partial solution.

8. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

9. For example, limiting filenames to alphanumeric characters can help to restrict the introduction
of unintended file extensions.

 Slide 15 of 29

AFFECTED ASSET

Open bat-portal.attackforge.com

POC

1. Do this...
2. Do that...

<some script>...<do something>...</some script>

 Slide 16 of 29

Figure 3

 Slide 17 of 29

 2. Inconsistent Access Control

CVSSv3 SCORE

Base 6.5

Temporal 6.5

Environmental 6.5

Vector CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L

DESCRIPTION

It appears that the application does not consistently apply access controls to all its resources. The lack
of access protection for some sensitive resources can be leveraged by an non-authorised attacker to
either gather important information for a consequent attack against other application users, or to
access and modify directly unprotected application data.
Assuming a user with a given identity, authorisation is the process of determining whether that user
can access a given resource, based on the user's privileges and any permissions or other access-
control specifications that apply to the resource.
When access control checks are not applied consistently - or not at all - users are able to access data
or perform actions that they should not be allowed to perform. This can lead to a wide range of
problems, including information exposures, denial of service, and arbitrary code execution.

 Slide 18 of 29

ATTACK SCENARIO

The page can be identified quick and easily through application fingerprinting and crawling. An
attacker could read sensitive data, either by reading the data directly from a data store that is not
properly restricted, or by accessing insufficiently-protected, privileged functionality to read the data.

REMEDIATION RECOMMENDATION

This issue should be fixed by applying proper authorisation permission to the affected resources
unless it is not an intended business feature.

• For web applications, make sure that the access control mechanism is enforced correctly at the
server side on every page. Users should not be able to access any unauthorised functionality or
information by simply requesting direct access to that page. One way to do this is to ensure that
all pages containing sensitive information are not cached, and that all such pages restrict access
to requests that are accompanied by an active and authenticated session token associated with
a user who has the required permissions to access that page.

• Ensure that you perform access control checks related to your business logic. These checks may
be different than the access control checks that you apply to more generic resources such as
files, connections, processes, memory, and database records. For example, a database may
restrict access for medical records to a specific database user, but each record might only be
intended to be accessible to the patient and the patient's doctor.

• Reduce the attack surface by carefully mapping roles with data and functionality. Use role-based
access control (RBAC) to enforce the roles at the appropriate boundaries. Note that this

 Slide 19 of 29

approach may not protect against horizontal authorisation, i.e., it will not protect a user from
attacking others with the same role.

AFFECTED ASSET

Open bat-api.attackforge.com, bat-portal.attackforge.com

NOTES

During testing, it was possible to iterate over 100k users in a short amount of
time using scripts. These scripts were successful in scraping user details
such as:

• First name
• Last name
• Email address
• Home address
• Work address

POC

1. Open a web browser in private/incognito mode
2. Navigate to https://bat-portal.attackforge.com/api/users/1
3. Notice that you are able to view all user information. Increase '1' to view

another user.

 Slide 20 of 29

Figure 4: Discover endpoint to enumerate users

 Slide 21 of 29

Figure 5: Set up automation parameters

 Slide 22 of 29

Figure 6: Notice 200 responses are successful

 Slide 23 of 29

 3. Relative Path Traversal

CVSSv3 SCORE

Base 4.3

Temporal 4.3

Environmental 4.3

Vector CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N

DESCRIPTION

The software uses external input to construct a pathname that should be within a restricted directory,
but it does not properly neutralize sequences such as '..' that can resolve to a location that is outside of
that directory.
This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

ATTACK SCENARIO

The attacker may be able to create or overwrite critical files that are used to execute code, such as
programs or libraries.
The attacker may be able to overwrite or create critical files, such as programs, libraries, or important
data. If the targeted file is used for a security mechanism, then the attacker may be able to bypass

 Slide 24 of 29

that mechanism. For example, appending a new account at the end of a password file may allow an
attacker to bypass authentication. The attacker may be able read the contents of unexpected files
and expose sensitive data. If the targeted file is used for a security mechanism, then the attacker may
be able to bypass that mechanism.
For example, by reading a password file, the attacker could conduct brute force password guessing
attacks in order to break into an account on the system. The attacker may be able to overwrite, delete,
or corrupt unexpected critical files such as programs, libraries, or important data. This may prevent the
software from working at all and in the case of a protection mechanisms such as authentication, it has
the potential to lockout every user of the software.

 Slide 25 of 29

Figure 7

REMEDIATION RECOMMENDATION

Assume all input is malicious. Use an 'accept known good' input validation strategy, i.e., use a whitelist
of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly
conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of
input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, 'boat' may be

 Slide 26 of 29

syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is
only expected to contain colours such as 'red' or 'blue.'
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). A
blacklist is likely to miss at least one undesirable input, especially if the code's environment changes.
This can give attackers enough room to bypass the intended validation. However, blacklists can be
useful for detecting potential attacks or determining which inputs are so malformed that they should
be rejected outright. When validating filenames, use stringent whitelists that limit the character set to
be used. If feasible, only allow a single '.' character in the filename to avoid weaknesses such as CWE-
23, and exclude directory separators such as '/' to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering mechanism that
removes potentially dangerous characters. This is equivalent to a blacklist, which may be incomplete
(CWE-184).
For example, filtering '/' is insufficient protection if the filesystem also supports the use of '' as a
directory separator. Another possible error could occur when the filtering is applied in a way that still
produces dangerous data (CWE-182). For example, if '../' sequences are removed from the '.../...//'
string in a sequential fashion, two instances of '../' would be removed from the original string, but the
remaining characters would still form the '../' string.

AFFECTED ASSET

Open bat-portal.attackforge.com

POC
Authenticate to the portal as administrator user and browse to the following
URL:

 Slide 27 of 29

https://globexcorp.com.au/test/cmsedit.jsp?file=../../../../../../../../etc/hostn
ame

Note that the resulting page will contain the hostname of the underlying
system.
Affected

• URL:
https://globexcorp.com.au/test/cmsedit.jsp?file=../../../../../../../../etc/
hostname

• Parameter: file

 Slide 28 of 29

Figure 8: Identified path traversal

 Slide 29 of 29

Figure 9: Accessing passwd

